Curriculum Subject: Chemistry KS5						
	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
YEAR 12	Atoms, compounds, molecules & equations Amount of substance Acid–base & redox reactions Electrons, bonding & structure	Atoms, compounds, molecules & equations Amount of substance Acid–base & redox reactions Electrons, bonding & structure	The periodic table & periodicity Group 2 & the halogens Basic concepts Hydrocarbons Alkenes and haloalkanes	Enthalpy changes Reaction rates Alcohols	Qualitative analysis Equilibrium (qualitative) Organic synthesis Analytical techniques (IR & MS)	Y2 content started: Reaction rates Aromatic compounds
	 The use of the mole as a quantity to measure change in reactions: including water of recrystallisation, complex calculations How electrons are configured in different levels of organisation: shells, subshells and orbitals Applying the fundamental concepts of bonding to data Developing the skill of record keeping for a labbook Options Round 2 	 The application of electron pair repulsion to understand the 3D shape of molecules The principle of electronegativity to explain polarity The different forces of attraction between molecules, including London forces and Hydrogen bonding 	 The trends that occur across a period and the use of the concepts of shielding, nuclear charge and atomic radii to explain these The reactivity and properties of Group 2 and Group 7 elements The naming of carbon- based organic compounds using IUPAC nomenclature The reactivity of the haloalkane and alkene functional groups and introduction to organic mechanisms as explantions for reaction outcomes 	 The use of enthalpy data to understand the energy changes on reaction The explanation of rates of reaction using collision theory and statsitical analysis using Boltzmann distribution curves The reactivity of the alcohol functional group and the use of alkenes in addition polymers 	 The use of K_c to quantify and explain changes to the position of equilibrium The use of specialist organic practical technqiues to synthesise a biologically active organic solid The analysis of organic sturtcures using infrared spectroscopy and mass spectrometry 	 The methods to determine the order of each reactant in the rate equation The importance of the rate equation for the rate determing step and its use in proposing mechanisms of reaction The chemistry and reactivity of aromatic (benzene) containing compounds, including phenols and directing groups
YEAR 13	 Equilibrium (quantitative) pH & buffers Carbonyl compounds Carboxylic acids & esters Calculating K_c for solutions and K_p for gases Calculation of the pH of acids, alkalis and buffer solutions The chemistry of the C=O carbonyl group and corresponding functional groups: esters, carboxylic acids; acid chlorides 	Enthalpy, entropy & free energy Nitrogen compounds Polymers • The chemistry of nitrogen based functional groups: amines and amides • The formation and hydrolysis of condensation polymers • The use of Born-Harber diagrams for enthalpy calcualtions • The concepts and calculations of enthalpy and entropy and their unification in Gibbs Free Energy	 Redox & electrode potentials Organic synthesis Chromatography & spectroscopy (NMR) Devising multi-step synthetic routes from a starting material to a product Use of ¹H and ¹³C NMR to deduce the structure of simple molecules Use of redox chemistry to induce a voltage by the formation of electrochemical cells 	Transition elements PolymersPAG practicals: theory• The chemistry of transition metals and the use of ligands to bind with transition metals to form complexes• The chemistry of transition metal complexes• The key practical theory covered in the PAG practicals over the 2 year course	 Revision Synoptic spaced practice with an emphasis of Paper 3: unified Chemistry How to decipher exam questions Revsiting key challenging concepts: calcualtions Applying knowledge to new scenarios (AO3) 	External exams Paper 1: Periodic table, elements and physical chemistry 100 marks, 2h15, 37% of total A-level Paper 2: Synthesis and Analytical Techniques 100 marks, 2h15, 37% of total A-level Paper 3: Unified Chemistry 70 marks, 1h30, 26% of total A-level

St Bede's Curriculum Design Principles

<u>Within subjects</u>: depth, relevance, sequencing, spacing

Between subjects: breadth, cultural capital, coherence, progression, interlinking